前沿
往篇回顾
在上一篇中,主要看了slub释放的代码流程,入口函数是
kmem_cache_free
,主要内容如下:
待补充!
本篇主要内容
到目前为止,slub系统已经分析了初始化、缓存区创建、对象分配、对象释放,还剩一个slub销毁,入口函数
kmem_cache_destroy
代码分析
kmem_cache_destroy
void kmem_cache_destroy(struct kmem_cache *s)
{
struct kmem_cache *c, *c2;
LIST_HEAD(release);
bool need_rcu_barrier = false;
bool busy = false;
BUG_ON(!is_root_cache(s));
get_online_cpus();
get_online_mems();
mutex_lock(&slab_mutex);
s->refcount--;
if (s->refcount)
goto out_unlock;/* 如果引用不为0,则不释放该slub */
/* 引用==0,释放slub,关键函数为do_kmem_cache_shutdown */
for_each_memcg_cache_safe(c, c2, s) {
if (do_kmem_cache_shutdown(c, &release, &need_rcu_barrier))
busy = true;
}
if (!busy)
do_kmem_cache_shutdown(s, &release, &need_rcu_barrier);
out_unlock:
mutex_unlock(&slab_mutex);
put_online_mems();
put_online_cpus();
do_kmem_cache_release(&release, need_rcu_barrier);
}
do_kmem_cache_shutdown
static int do_kmem_cache_shutdown(struct kmem_cache *s,
struct list_head *release, bool *need_rcu_barrier)
{
/* 销毁slub核心函数:__kmem_cache_shutdown->kmem_cache_close */
if (__kmem_cache_shutdown(s) != 0) {
printk(KERN_ERR "kmem_cache_destroy %s: "
"Slab cache still has objects\n", s->name);
dump_stack();
return -EBUSY;
}
if (s->flags & SLAB_DESTROY_BY_RCU)
*need_rcu_barrier = true;
#ifdef CONFIG_MEMCG_KMEM
if (!is_root_cache(s))
list_del(&s->memcg_params.list);
#endif
/* 成功后,将slub从slab_cache中删除 */
list_move(&s->list, release);
return 0;
}
kmem_cache_close
/*
* Release all resources used by a slab cache.
*/
static inline int kmem_cache_close(struct kmem_cache *s)
{
int node;
struct kmem_cache_node *n;
/* 释放本地CPU的缓存区,即kmem_cache_cpu管理的缓存区空间 */
flush_all(s);
/* 遍历各节点,get_node()获取节点下的kmem_cache_node管理结构 */
for_each_kmem_cache_node(s, node, n) {
/* 释放各个node中的半满队列 */
free_partial(s, n);
/* 如果nr_partial非0,则说明有异常;销毁失败 */
if (n->nr_partial || slabs_node(s, node))
return 1;
}
/* 将kmem_cache的每CPU缓存管理kmem_cache_cpu通过free_percpu()归还给系统 */
free_percpu(s->cpu_slab);
/* 将每node管理结构体kmem_cache_node归还系统 */
free_kmem_cache_nodes(s);
return 0;
}
flush_all
/*
* on_each_cpu_cond任务是遍历所有cpu,执行作为入参传入的函数has_cpu_slab
* 判断各个cpu上的资源是否存在,存在则通过flush_cpu_slab对该cpu上的资源进行释放
*/
static void flush_all(struct kmem_cache *s)
{
on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
}
on_each_cpu_cond
/*
* cond_func: 钩子函数,用于根据调用者传入的CPU信息参数来判断是否需要打断该CPU以执行入参func的操作
* has_cpu_slab:判断cpu是否有缓冲区,有则返回true;即需要CPU被打断去执行本地缓存释放动作
* smp_call_func_t func: 任务函数
* info: 入参
* gfp_flags:申请cpumask空间的标识
*/
void on_each_cpu_cond(bool (*cond_func)(int cpu, void *info),
smp_call_func_t func, void *info, bool wait,
gfp_t gfp_flags)
{
cpumask_var_t cpus;
int cpu, ret;
might_sleep_if(gfp_flags & __GFP_WAIT);
/* 申请cpumask空间 */
if (likely(zalloc_cpumask_var(&cpus, (gfp_flags|__GFP_NOWARN)))) {
/* 禁止抢占内核 */
preempt_disable();
/* 遍历各个CPU,根据cond_func()判断是否需要对该CPU进行打断处理,如果需要则cpumask_set_cpu()对该CPU进行标志 */
for_each_online_cpu(cpu)
if (cond_func(cpu, info))
cpumask_set_cpu(cpu, cpus);
/* 打断各个标志位对应的CPU去执行func()的操作 */
on_each_cpu_mask(cpus, func, info, wait);
/* 完了将会恢复抢占,释放cpumask空间 */
preempt_enable();
free_cpumask_var(cpus);
} else {
/*
* zalloc_cpumask_var()申请不到空间,将会逐个处理器进行打断再进行处理,其最终功能和作用与申请到空间的情况都是一致的
*/
preempt_disable();
for_each_online_cpu(cpu)
if (cond_func(cpu, info)) {
ret = smp_call_function_single(cpu, func,
info, wait);
WARN_ON_ONCE(ret);
}
preempt_enable();
}
}
__flush_cpu_slab
flush_cpu_slab()->__flush_cpu_slab()
/* 将本地CPU的缓存区进行释放 */
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
{
/* 首先获取本地CPU的kmem_cache_cpu管理结构 */
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
if (likely(c)) {
/*
* 如果本地CPU存在缓存区占用, 则通过flush_slab()释放本地缓存区
* 其主要通过deactivate_slab()去激活本地缓存区;即释放
*/
if (c->page)
flush_slab(s, c);
/* 本地CPU半满缓存列表进行释放 */
unfreeze_partials(s, c);
}
}
deactivate_slab
/*
* Remove the cpu slab
*/
static void deactivate_slab(struct kmem_cache *s, struct page *page,
void *freelist)
{
enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
int lock = 0;
enum slab_modes l = M_NONE, m = M_NONE;
void *nextfree;
int tail = DEACTIVATE_TO_HEAD;
struct page new;
struct page old;
/* 如果不为空,则该CPU的slub对象被其它CPU释放了, 将会更新统计同时设置tail标识为DEACTIVATE_TO_TAIL */
if (page->freelist) {
stat(s, DEACTIVATE_REMOTE_FREES);
tail = DEACTIVATE_TO_TAIL;
}
/* 如果为空,意味着该缓存区的对象已经全部分配到了CPU的kmem_cache_cpu中freelist链表中 */
/*
* 1. 通过while循环遍历CPU上的freelist链表get_greepointer()获取空闲对象
* 2. 通过内部的do-while循环,借用__cmpxchg_double_slab()比较交换将对象以插入缓存区页面的freelist空闲链表头的方式归还回去
* 3. 目标:当页面还处于冻结状态,将会释放每CPU的所有可用对象回到缓冲区的空闲列表中
*/
while (freelist && (nextfree = get_freepointer(s, freelist))) {
void *prior;
unsigned long counters;
do {
prior = page->freelist;
counters = page->counters;
set_freepointer(s, freelist, prior);
new.counters = counters;
new.inuse--;
VM_BUG_ON(!new.frozen);
} while (!__cmpxchg_double_slab(s, page,
prior, counters,
freelist, new.counters,
"drain percpu freelist"));
freelist = nextfree;
}
/*
* Stage two: Ensure that the page is unfrozen while the
* list presence reflects the actual number of objects
* during unfreeze.
*
* We setup the list membership and then perform a cmpxchg
* with the count. If there is a mismatch then the page
* is not unfrozen but the page is on the wrong list.
*
* Then we restart the process which may have to remove
* the page from the list that we just put it on again
* because the number of objects in the slab may have
* changed.
*/
redo:
/* 将缓冲区的freeelist以及counters信息存到临时old结构中以备后用 */
old.freelist = page->freelist;
old.counters = page->counters;
VM_BUG_ON(!old.frozen);
/* Determine target state of the slab */
new.counters = old.counters;
if (freelist) {
/* 把前面步骤一未被归还的那个对象归还到缓冲区中,同时更新new信息,此时new.freelist持有该缓存区的所有空闲对象 */
new.inuse--;
set_freepointer(s, freelist, old.freelist);
new.freelist = freelist;
} else
new.freelist = old.freelist;
/* 将临时缓冲区状态设置为非冻结 */
new.frozen = 0;
if (!new.inuse && n->nr_partial >= s->min_partial)
/* 该slab缓存区中无对象被使用(!new.inuse),且部分满slab个数大于最小值,意味着该缓存区需要被销毁 */
m = M_FREE;
else if (new.freelist) {
/* freelist不为空,仅使用了部分对象,则标识m为M_PARTIAL */
m = M_PARTIAL;
if (!lock) {
lock = 1;
/*
* Taking the spinlock removes the possiblity
* that acquire_slab() will see a slab page that
* is frozen
*/
spin_lock(&n->list_lock);
}
} else {
/* freelist为空,仅使用了部分对象,则标识m为M_PARTIAL */
m = M_FULL;
if (kmem_cache_debug(s) && !lock) {
lock = 1;
/*
* This also ensures that the scanning of full
* slabs from diagnostic functions will not see
* any frozen slabs.
*/
spin_lock(&n->list_lock);
}
}
/*
* 判断上一次的缓存区状态l与接下来的操作状态m是否一致,不一致则意味着需要发生变更
* 其将会先判断l的状态为M_PARTIAL或M_FULL,继而采取对应的remove_partial()或remove_full()链表摘除操作
*/
if (l != m) {
if (l == M_PARTIAL)
remove_partial(n, page);
else if (l == M_FULL)
remove_full(s, n, page);
if (m == M_PARTIAL) {
add_partial(n, page, tail);
stat(s, tail);
} else if (m == M_FULL) {
stat(s, DEACTIVATE_FULL);
add_full(s, n, page);
}
}
l = m;
/*
* 判断自redo到此,缓存区是否发生过对象操作变更,如果没发生过的话,将会把new暂存的空闲对象挂载到缓存区中以及更新counters
* 否则将会跳转回redo标签重新执行前面的操作
*/
if (!__cmpxchg_double_slab(s, page,
old.freelist, old.counters,
new.freelist, new.counters,
"unfreezing slab"))
goto redo;
if (lock)
spin_unlock(&n->list_lock);
if (m == M_FREE) {
stat(s, DEACTIVATE_EMPTY);
discard_slab(s, page);
stat(s, FREE_SLAB);
}
}